Mechanism of Heat Transfer Enhancement in the Core Flow of a Tube and Its Numerical Simulation

نویسندگان

  • W. Liu
  • K. Yang
چکیده

The principle of heat transfer enhancement in the core flow of a tube has been proposed, in this paper, to make fluid temperature uniform in the core region of a tube and decrease flow resistance, which is different from heat transfer enhancement in the boundary flow of a tube. Two new models, representing heat transfer enhancement in the laminar and turbulent tube flow, have been established and numerically analyzed. Theoretical and numerical results indicate that heat transfer enhanced components designed according to the principle proposed in this paper will be benefit for increasing convective heat transfer coefficient, reducing flow resistance and raising the PEC value of a heat transfer enhanced tube. The presented principle, therefore, may help developing new type of heat transfer unit and designing heat exchanger with high heat transfer coefficient and low flow resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of heat transfer enhancement and flow structure of alternating oval tubes by considering different alternate angles under turbulent flow

In this research, the convective heat transfers of turbulent water fluid flow in alternating oval tubes is studied using computational fluid dynamics. The purpose of the study is to analyze the heat transfer enhancement and secondary internal flows under different alternate angles. Also, comparing the effect of two schemesfor the domain discretization to be used in the soluti...

متن کامل

Numerical study on convective heat transfer for water-based alumina nanofluids

The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...

متن کامل

Numerical study on convective heat transfer for water-based alumina nanofluids

The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...

متن کامل

Numerical Comparison of Turbulent Heat Transfer and Flow Characteristics of SiO2/Water Nanofluid within Helically Corrugated Tubes and Plain Tube

Turbulent heat transfer in Helically Corrugated Tubes (HCT) was numerically investigated for pure water and SiO2 nanofluid using Computational Fluid Dynamics (CFD). This study was carried out for different corrugating pitches (5, 7, 8 mm) and heights (0.5, 0.75, 1.25 mm) at various Reynolds numbers ranging from 5000 to 13300. The effect of nanoparticles on heat transfer augmentation for plain t...

متن کامل

Comparison of convective heat transfer of turbulent nanofluid flow through helical and conical coiled tubes

Application of nanofluid and coiled tubes are two passive methods for increasing the heat transfer. In the present study, the turbulent flows of water and nanofluid in coiled tubes heat exchanger were numerically studied. CuO-water nanofluid containing 1 vol% copper oxide nanoparticles was used and single-phase approach was considered for nanofluid flow. The effect of different geometrical para...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010